
Masoud Chelongar
Hands-on Software Architect

Accelerating
Software

Transformation

The Synergy between Domain-Driven Design & Systems Thinking

1

1

Defining The
Problem
Space

Overview

1

Defining The
Problem
Space

Investigating
Tools &

Methodologies

Overview

1

Defining The
Problem
Space

Investigating
Tools &

Methodologies

Designing The
Solution

Framework

Overview

✓ Evolving an Organisation’s Software

What is Software Transformation

✓ Evolving an Organisation’s Software

✓ Adopt Software to The New Business Requirements

What is Software Transformation

✓ Evolving an Organisation’s Software

✓ Adopt Software to The New Business Requirements

✓ Change The Software Based on Market Demands

What is Software Transformation

Failing to act
evolutionary

compels revolutionary action.

Technical Organisational &

&

Sociotechnical
Systems

Sociotechnical
Systems

Goals Culture

Processes

People Infrastructure

Technology

 Resistance To Change

Skills Gap

Collaboration Challenges

Leadership Buy-in

People

Infrastructure

Legacy Systems

Integration Issues

Scalability Concerns

Downtime Risk

Culture

Fear of Accountability

Cross-Functional Tension

Cultural Misfits

Motivation Challenges

Processes

Misalignment of Processes & Tools

Documentation Deficiency

Change Management

Technology

Rapidly Changing Landscape

Vendor Lock-in

Customisation & Standardisation

Security Concerns

Goals

Ambiguity in Objectives

Short-Term Focus

KPIs Mismatch

Stakeholder Alignment

Hybrid Solution

Cross-Disciplinary
Thinking

+ +

Team
Dynamics

Business-Centric
Development

Cross-Disciplinary Thinking

In the Systems Age we tend to look at
things as part of larger wholes rather

than as wholes to be taken apart.

—Russell L. Ackof

Think Non-Linearly

vs.

Linear Thinking

Procedural

Linear Thinking

Procedural

Predictable Process

Linear Thinking

Procedural

Predictable Process

Step-by-Step Approach

Linear Thinking

Procedural

Predictable Process

Step-by-Step Approach

Focused Problem Solving Approach

Linear Thinking

Procedural

Predictable Process

Step-by-Step Approach

Focused Problem Solving Approach

Essential Well-Defined Requirements

None-Linear Thinking

Iterative Process

None-Linear Thinking

Iterative Process

User-centric Development

None-Linear Thinking

Parallel Problem Solving

Iterative Process

User-centric Development

None-Linear Thinking

Based on Incremental Development

Iterative Process

User-centric Development

Parallel Problem Solving

None-Linear Thinking

Focus on Collaboration and Communication

Iterative Process

User-centric Development

Parallel Problem Solving

Based on Incremental Development

Systems Thinking

For those who stake their identity on the
role of omniscient conqueror, the
uncertainty exposed by systems thinking
is hard to take. If you can’t understand,
predict, and control, what is there to do?

—Donella Meadows, Thinking in System

Systems Thinking

Systems thinking expands our toolsets as
knowledge workers. It steps us outside
the constant, pointless culture war about
architecture versus engineering as a
practice

—Diana Montalion, Learning Systems
Thinking

Team Dynamics

Team Dynamics

Role Clarification

Team Dynamics

Role Clarification

Foster Collaboration

Team Dynamics

Role Clarification

Foster Collaboration

Reduced Process Frictions

Team Dynamics

Role Clarification

Foster Collaboration

Reduced Process Frictions

Promoting Ownership & Aligning Values

Team Dynamics

Role Clarification

Foster Collaboration

Reduced Process Frictions

Promoting Ownership & Aligning Values

Encouraging Continues Learning Culture

Team Topologies

Team Topologies is an approach to
designing team-of-teams
organisations for fast flow of value.

—Manuel Pais & Matthew Skelton

Business-Centric Development

Technology

❖ Choose technology stack that reflects
business needs

Business-Centric Development

Processes

 ❖ Define aligned workflows
 ❖ Establish efficient communication or clear

cross-team dependencies

Business-Centric Development

People

❖ Align suitable teams
❖ Define clear ownership

Business-Centric Development

Culture

❖ Cultural silos Prevention
❖ Cultivate strong communication between

technical and business teams

Business-Centric Development

Goal

❖ Align objectives
❖ Scattered priorities or poorly defined success

metrics prevention

Business-Centric Development

Domain-Driven Design

Domain-Driven Design is an approach
to software development that centres the
development on programming a domain
model that has a rich understanding of
the processes and rules of a domain.

—Martin Fowler

Hybrid Solution

Systems
Thinking

+ +

Team
Topologies

Domain-Driven
Design

Define The Whole Picture
With

Systems Thinking

Analyse Feedback Loops

✤ Identify reinforcing (Positive)
and balancing (Negative) loops

1

Identify System Boundaries

✤ Map out the entire Sociotechnical
System

✤ Apply Casual loop diagram and stock-
and-flow model to understand
dependencies

Analyse Feedback Loops

✤ Identify reinforcing (Positive)
and balancing (Negative) loops

1

Identify System Boundaries

✤ Map out the entire Sociotechnical
System

✤ Apply Casual loop diagram and stock-
and-flow model to understand
dependencies

Analyse Feedback Loops

✤ Identify reinforcing (Positive)
and balancing (Negative) loops

Identify & Focus on Leverage Points

✤ Pinpoint high-impact areas where small changes can drive significant improvements.

1

Identify System Boundaries

✤ Map out the entire Sociotechnical
System

✤ Apply Casual loop diagram and stock-
and-flow model to understand
dependencies

Analyse Feedback Loops

✤ Identify reinforcing (Positive)
and balancing (Negative) loops

Identify & Focus on Leverage Points

✤ Pinpoint high-impact areas where small changes can drive significant improvements.

Set SW Transformation Goals

✤Align goals across all six sociotechnical system groups
✤ Use end-to-end cycle time or customer satisfaction metrics to reflect

system-wide outcomes

1

Structure The Problem Space
With

Domain-Driven Design

Identify Domains and Bounded
Contexts

✤ Core, Supporting, and Generic Domains
✤ Define Bounded Contexts for each

domain

2

Identify Domains and Bounded
Contexts

✤ Core, Supporting, and Generic Domains
✤ Define Bounded Contexts for each

domain

Model Domains

✤ Use Entities, Aggregates, Value
Objects, and Event Storming to
model domain logic

2

Identify Domains and Bounded
Contexts

✤ Core, Supporting, and Generic Domains
✤ Define Bounded Contexts for each

domain

Model Domains

✤ Use Entities, Aggregates, Value
Objects, and Event Storming to
model domain logic

Design Context Maps

✤ Map relationships and interactions between Bounded Contexts
✤ Define map to plan how domains will interact during and after the

transformation

2

Identify Domains and Bounded
Contexts

✤ Core, Supporting, and Generic Domains
✤ Define Bounded Contexts for each

domain

Model Domains

✤ Use Entities, Aggregates, Value
Objects, and Event Storming to
model domain logic

Focus on Core Domains

✤ Prioritise transformation efforts around the core domains

Design Context Maps

✤ Map relationships and interactions between Bounded Contexts
✤ Define map to plan how domains will interact during and after the

transformation

2

Optimise Organisation Design
With

Team Topologies

Define Team Types

✤ Stream-aligned Teams
✤ Enabling Teams
✤ Platform Teams
✤ Complicated Subsystem Teams

3

Define Team Types

✤ Stream-aligned Teams
✤ Enabling Teams
✤ Platform Teams
✤ Complicated Subsystem Teams

Align Teams with Domains

✤ Structure teams around
Bounded Contexts from
Domain-Driven Design

3

Define Team Types

✤ Stream-aligned Teams
✤ Enabling Teams
✤ Platform Teams
✤ Complicated Subsystem Teams

Align Teams with Domains

✤ Structure teams around
Bounded Contexts from
Domain-Driven Design

Establish Interaction Mode Between Teams

✤ Collaboration
✤Facilitating
✤ X-As-Service

3

Define Team Types

✤ Stream-aligned Teams
✤ Enabling Teams
✤ Platform Teams
✤ Complicated Subsystem Teams

Align Teams with Domains

✤ Structure teams around
Bounded Contexts from
Domain-Driven Design

Minimise Cognitive Loads in Teams

Establish Interaction Mode Between Teams

✤ Collaboration
✤Facilitating
✤ X-As-Service

3

Finalise Transformation
With

Stabilisation & Continues
Improvements

Leverage
Systems
Thinking

3

Leverage
Systems
Thinking

Refine
DDD

Models

3

Leverage
Systems
Thinking

Refine
DDD

Models

Optimize
Team

Topologies

3

Thanks

Masoud Chelongar
Hands-on Software Architect

msd@chelongar.com

https://www.chelongar.com

mailto:msd@chelongar.com
https://www.chelongar.com

